000 16432nad a22009617i 4500
001 34754
003 CO-SiCUC
005 20240608105904.0
008 220716b2022 |||||||| |||| 00| 0 spa d
035 _a(CO-SiCUC) 34754
040 _aCO-SiCUC
_bspa
_cCO-SiCUC
_erda
090 _bINI-08872 2022
100 1 _4aut
_aDiaz Oviedo, Álvaro Javier
_eautor
_947819
245 1 _aDiseño de estrategias para la compensación del impacto ambiental generado por la empresa UNIPIEDRA, basados en el cálculo de su huella de carbono /
_cÁlvaro Javier Diaz Oviedo y José David Loaiza Dájer; director Gean Pablo Mendoza Ortega ; codirector Jose Luis Ruiz Meza.
264 0 _aSincelejo :
_bCorporación Universitaria del Caribe – CECAR,
_c2022.
300 _a1,4 MB :
_a81 páginas ;
_btablas, figuras ;
336 _2rdacontent
_atexto
_btxt
337 _2rdamedia
_acomputadora
_bc
338 _2rdacarrier
_arecurso en línea
_bcr
347 _2rdaft
_aPDF
502 _a Trabajo de grado
_b(Ingeniero de Industrial) --
_cCorporación Universitaria del Caribe. Facultad de Ciencias Básicas, Ingenierías y Arquitectura. Programa de Ingeniería de Industrial. Sincelejo, 2022
510 _aAbdul, D., Wenqi, J., & Tanveer, A. (2021). Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology. Renewable Energy, 184, 1018–1032. https://doi.org/10.1016/j.renene.2021.10.082
510 _aAgency International Energy. (2021). Datos y estadisticas, emisiones de CO2. https://www.iea.org/data-and-statistics/data-browser?country=WORLD&fuel=CO2 emissions&indicator=TotCO2
510 _aBaills, A., Grandjean, G., Ettinger, S., Abad, J., Dias, N., Albris, K., Hemmers, J., Clegg, G., & Martucci, C. (2020). International Journal of Disaster Risk Reduction The ESPREssO Action Database : Collecting and assessing measures for disaster risk reduction and climate change adaptation. 48. https://doi.org/10.1016/j.ijdrr.2020.101599
510 _aBonneuil, C., Choquet, P. L., & Franta, B. (2021). Early warnings and emerging accountability: Total’s responses to global warming, 1971–2021. Global Environmental Change, 71, 102386. https://doi.org/10.1016/J.GLOENVCHA.2021.102386
510 _aBritish Standard Institute. (2011). Guide to PAS 2050 How to assess the carbon footprint of goods and services. In Carbon Trust, UK Department for Environment, Food and Rural Affairs (Defra). https://www.fao.org/sustainable-food-value-chains/library/detalles/es/c/266040/
510 _aBSI. (2011). PAS 2050:2011 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution, London. 1–45.
510 _aBüyüközkan, G., Havle, C. A., & Feyzioğlu, O. (2021a). An integrated SWOT based fuzzy AHP and fuzzy MARCOS methodology for digital transformation strategy analysis in airline industry. Journal of Air Transport Management, 97(August). https://doi.org/10.1016/j.jairtraman.2021.102142
510 _aBüyüközkan, G., Havle, C. A., & Feyzioğlu, O. (2021b). Digital competency evaluation of lowcost airlines using an integrated IVIF AHP and IVIF VIKOR methodology. Journal of Air Transport Management, 91(January). https://doi.org/10.1016/j.jairtraman.2020.101998
510 _aChen, X., Wang, H., Horton, R., & DeFlorio, J. (2021). Life-cycle assessment of climate change impact on time-dependent carbon-footprint of asphalt pavement. Transportation Research Part D: Transport and Environment, 91(January), 102697. https://doi.org/10.1016/j.trd.2021.102697
510 _aDe Brito, M. M., & Evers, M. (2016). Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Natural Hazards and Earth System Sciences, 16(4), 1019–1033. https://doi.org/10.5194/nhess-16-1019-2016
510 _aDenchak, M. (2019). Greenhouse Effect 101. NRDC. https://www.nrdc.org/stories/greenhouseeffect-101
510 _aDias, A. C., & Arroja, L. (2012). Comparison of methodologies for estimating the carbon footprint – case study of office paper. Journal of Cleaner Production, 24, 30–35. https://doi.org/10.1016/J.JCLEPRO.2011.11.005
510 _aDiaz, D., & Villegas, N. (2015). Correlación canónica entre índices macroclimáticos y variables meteorológicas de superficie en Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 18(2), 543–552. https://doi.org/10.31910/rudca.v18.n2.2015.185
510 _aDiaz, H., & Guedes Soares, C. (2021). A novel multi-criteria decision-making model to evaluate floating wind farm locations. Renewable Energy. https://doi.org/10.1016/j.iref.2021.08.006
510 _aDoney, S. C., Busch, D. S., Cooley, S. R., & Kroeker, K. J. (2020). The impacts of ocean acidification on marine ecosystems and reliant human communities. Annual Review of Environment and Resources, 45, 83–112. https://doi.org/10.1146/annurev-environ-012320- 083019
510 _aEl Tiempo. (2021). ¿Cuál ha sido el año más caluroso registrado hasta el momento? - Medio Ambiente - Vida - ELTIEMPO.COM. https://www.eltiempo.com/vida/medio-ambiente/cualha-sido-el-ano-mas-caluroso-registrado-hasta-el-momento-559462
510 _aGarcia, R., & Freire, F. (2014). Carbon footprint of particleboard: A comparison between ISO/TS 14067, GHG Protocol, PAS 2050 and Climate Declaration. Journal of Cleaner Production, 66, 199–209. https://doi.org/10.1016/j.jclepro.2013.11.073
510 _aGe, M., Friedrich, J., & Vigna, L. (2021, September 2). Cuatro gráficos que explican las emisiones de gases de efecto invernadero por país y por sector | WRI Mexico. https://wrimexico.org/bloga/cuatro-gráficos-que-explican-las-emisiones-de-gases-de-efectoinvernadero-por-país-y-por
510 _aGlobal Climate Initiatives. (2020, March 11). LAS EMISIONES DIRECTAS E INDIRECTAS. https://globalclimateinitiatives.com/es/las-emisiones-directas-e-indirectas/
510 _aGui, F., Ren, S., Zhao, Y., Zhou, J., Xie, Z., Xu, C., & Zhu, F. (2019). Activity-based allocation and optimization for carbon footprint and cost in product lifecycle. Journal of Cleaner Production, 236, 117627. https://doi.org/10.1016/j.jclepro.2019.117627
510 _aHickmann, T. (2017). Voluntary global business initiatives and the international climate negotiations: A case study of the Greenhouse Gas Protocol. Journal of Cleaner Production, 169, 94–104. https://doi.org/10.1016/j.jclepro.2017.06.183
510 _aHohenthal, C., Leon, J., Dobon, A., Kujanpää, M., Meinl, G., Ringman, J., Hortal, M., & Forsström, U. (2019). The ISO 14067 approach to open-loop recycling of paper products: Making it operational. Journal of Cleaner Production, 224, 264–274. https://doi.org/10.1016/J.JCLEPRO.2019.03.179
510 _aIDEAM. (2016). Y Departamental De Gases Efecto Invernadero - De Gases Efecto.
510 _aIDEAM. (2018, December 18). Colombia le presenta al mundo su Reporte de Actualización en Cambio Climático ante la Convención de Naciones Unidas - NOTICIAS - IDEAM. http://www.pronosticosyalertas.gov.co/web/sala-de-prensa/noticias/- /asset_publisher/LdWW0ECY1uxz/content/colombia-le-presenta-al-mundo-su-reporte-deactualizacion-en-cambio-climatico-ante-la-convencion-de-naciones-unidas
510 _aMatuštík, J., & Kočí, V. (2021). What is a footprint? A conceptual analysis of environmental footprint indicators. Journal of Cleaner Production, 285. https://doi.org/10.1016/j.jclepro.2020.124833
510 _aMcCaffery, C., Zhu, H., Tang, T., Li, C., Karavalakis, G., Cao, S., Oshinuga, A., Burnette, A., Johnson, K. C., & Durbin, T. D. (2021). Real-world NOx emissions from heavy-duty diesel, natural gas, and diesel hybrid electric vehicles of different vocations on California roadways. Science of the Total Environment, 784, 147224. https://doi.org/10.1016/j.scitotenv.2021.147224
510 _aMuñoz, B., & Romana, M. (2016). Application of Multicriteria Decision Methods in Evaluating Alternative for TRanportation Facilities. Pensamiento Matematico, 6, 27–46. file:///C:/Users/Almacen/Desktop/Tesis/DialnetAplicacionDeMetodosDeDecisionMulticriterioDiscreto-5998856.pdf
510 _aNaciones Unidas. (1992). Conferencia de las Partes de la Convención Marco de las Naciones Unidas sobre el Cambio Climático. Aprobación Del Acuerdo de Paris. https://unfccc.int/sites/default/files/convention_text_with_annexes_spanish_for_posting.pdf
510 _aNaciones Unidas. (2015). De Estocolmo a Kyoto: Breve historia del cambio climatico. https://www.un.org/es/chronicle/article/de-estocolmo-kyotobreve-historia-del-cambioclimatico
510 _aNg, E. C. Y., Huang, Y., Hong, G., Zhou, J. L., & Surawski, N. C. (2021). Reducing vehicle fuel consumption and exhaust emissions from the application of a green-safety device under real driving. Science of the Total Environment, 793(2), 148602. https://doi.org/10.1016/j.scitotenv.2021.148602
510 _aRamlan, N. A., Yahya, W. J., Ithnin, A. M., Hasannuddin, A. K., Norazni, S. A., Mazlan, N. A., Sugeng, D. A., Bahar, N. D., & Koga, T. (2016). Performance and emissions of light-duty diesel vehicle fuelled with non-surfactant low grade diesel emulsion compared with a high grade diesel in Malaysia. Energy Conversion and Management, 130(2016), 192–199. https://doi.org/10.1016/j.enconman.2016.10.057
510 _aRizvi, S., Pagnutti, C., Bauch, C. T., & Anand, M. (2017). Global Land Use Implications of Dietary Trends: A Tragedy of the Commons. BioRxiv, 1–12. https://doi.org/10.1101/195396
510 _aRobert, S., & Schleyer-lindenmann, A. (2021). Land Use Policy How ready are we to cope with climate change ? Extent of adaptation to sea level rise and coastal risks in local planning documents of southern France. Land Use Policy, 104, 105354. https://doi.org/10.1016/j.landusepol.2021.105354
510 _aRomero, E. F., & Sevilla, K. M. (2017). Evaluación del impacto ambiental generado por la extracción y procesamiento de piedra caliza en la trituradora San José en el municipio de Toluviejo, departamento de Sucre, Colombia.
510 _aRotz, C. A., Montes, F., & Chianese, D. S. (2010). The carbon footprint of dairy production systems through partial life cycle assessment. Journal of Dairy Science, 93(3), 1266–1282. https://doi.org/10.3168/jds.2009-2162
510 _aSharif, A., Meo, M. S., Chowdhury, M. A. F., & Sohag, K. (2021). Role of solar energy in reducing ecological footprints: An empirical analysis. Journal of Cleaner Production, 292, 126028. https://doi.org/10.1016/j.jclepro.2021.126028
510 _aSolano, S., & Ortiz, E. (2016). Methodology for the quantification of the carbon footprint of buildings in Costa Rica and its application on the residential module Tropika. Tecnologia En Marcha, 29(3), 73–84. http://dx.doi.org/10.18845/tm.v29i3.2889
510 _aSun, X., Dong, Y., Wang, Y., & Ren, J. (2022). Sources of greenhouse gas emission reductions in OECD countries: Composition or technique effects. Ecological Economics, 193, 107288. https://doi.org/10.1016/J.ECOLECON.2021.107288
510 _aVardy, M., Oppenheimer, M., Dubash, N. K., O’Reilly, J., & Jamieson, D. (2017). The Intergovernmental Panel on Climate Change: Challenges and Opportunities. Annual Review of Environment and Resources, 42, 55–75. https://doi.org/10.1146/annurev-environ-102016- 061053
510 _aWang, X., Xu, L. L., Cui, S. H., & Wang, C. H. (2020). Reflections on coastal inundation, climate change impact, and adaptation in built environment: progresses and constraints. Advances in Climate Change Research, 11(4), 317–331. https://doi.org/10.1016/j.accre.2020.11.010
510 _aWorld Resources Institute, & WBCSD. (2017, December 15). Protocolo de gases de efecto invernadero. https://ghgprotocol.org/about-us
510 _aWu, L., Huang, K., Ridoutt, B. G., Yu, Y., & Chen, Y. (2021). A planetary boundary-based environmental footprint family: From impacts to boundaries. Science of the Total Environment, 785, 147383. https://doi.org/10.1016/j.scitotenv.2021.147383
510 _aWu, P., Xia, B., & Wang, X. (2015). The contribution of ISO 14067 to the evolution of global greenhouse gas standards—A review. Renewable and Sustainable Energy Reviews, 47, 142– 150. https://doi.org/10.1016/J.RSER.2015.02.055
510 _aYuan-hai, F. U., Xue-jie, G. A. O., Ying-mo, Z. H. U., & Dong, G. U. O. (2021). Climate change projection over the Tibetan Plateau based on a set of RCM simulations. Advances in Climate Change Research, xxxx, 1–9. https://doi.org/10.1016/j.accre.2021.01.004
510 _aZen, I. S., Al-Amin, A. Q., Alam, M. M., & Doberstein, B. (2021). Magnitudes of households’ carbon footprint in Iskandar Malaysia: Policy implications for sustainable development. Journal of Cleaner Production, 315(June), 128042. https://doi.org/10.1016/j.jclepro.2021.128042
510 _aZhang, S., Taiebat, M., Liu, Y., Qu, S., Liang, S., & Xu, M. (2019). Regional water footprints and interregional virtual water transfers in China. Journal of Cleaner Production, 228, 1401–1412. https://doi.org/10.1016/j.jclepro.2019.04.298
520 _aLa investigación presente tiene como fin determinar la estimación de la huella de carbono generada por la fabricación de agregados para la construcción, en la empresa UNIPIEDRA, aplicando la metodología de la medición de huella de carbono PAS 2050, en la cual, se tuvieron en cuenta los datos relacionados con el consumo de energía eléctrica y combustible en los procesos que se realizan en la empresa ya mencionada. En esta investigación se describen los diferentes procesos y actividades, asimismo, el cálculo de las emisiones de gases de efecto invernadero en Kilogramo de CO2 equivalente por producto generado. Los resultados obtenidos arrojaron que, durante el mes de mayo del año 2021, la empresa en sus actividades y procesos genera un total 79.237,623 de kg de CO2 equivalente, donde la gravilla es el subproducto con mayor porcentaje de participación. Continuamente, se diseñaron alternativas para disminuir el impacto ambiental generado por las operaciones y actividades de la empresa, para ello, se implementó la metodología multicriterio para la evaluación jerárquica de estrategias (AHP). Esta investigación puede ser considerada como guía para la empresa en la toma de decisiones para en la búsqueda de estrategias que ayuden a disminuir o controlar las emisiones de gases de efecto invernadero al medio ambiente.
_cEl trabajo.
520 _aThe purpose of the present investigation is to determine the estimation of the carbon footprint generated by the manufacture of aggregates for contruction, in the company UNIPIEDRA, applying the methodology of the carbon footprint measurement PAS 2050, in which, were taken into account the daa related to the consumption of electricity and fuel in the processes carried out in the aforementioned company. This research describes the different processes and activities, as well as the calculation of Greenhouse gas emissions in kilograms of 𝐶𝑂2 equivalent per product generated. The results obtained showed that, during the month of May 2021, the company in its activities and processes generates a total of 79.237,623 de kg of CO2eq, where gravel is the byproduct with the highest percentage of participation. Continuously, alternatives were designed to reduce the environmental impact generateed by the company’s operations and activities, for this, the multi-criteria methodology for the hierarchical evaluation of strategies (AHP) was implemented. This research can be considered as a guide for the company in decision Making in the search for strategies that help reduce or control Greenhouse gas emissions into the environment.
_cEl trabajo.
590 _aIngeniería Industrial
650 0 7 _2armarc
_aGases.
_94657
650 0 7 _2armarc
_aEnergía eléctrica.
_946375
650 0 7 _2armarc
_aEfecto invernadero.
_947823
653 4 _aEstrategias.
653 4 _aGases de efecto invernadero.
653 4 _aHuella de carbono.
653 4 _aImpacto ambiental
653 4 _aMateriales agregados.
700 _4aut
_aLoaiza Dájer, Jose David
_eautor
_947821
700 _4dir
_aMendoza Ortega, Gean Pablo
_edirector
_943514
700 _4cod
_aRuiz Meza, Jose Luis
_ecodirector
_93230
942 _2Signatura Local
_cTE
999 _c34754
_d34754